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@ Human Phenotype Ontology

e logically defined vocabulary for describing medically relevant abnormal phenotypes.
e de facto standard for computational phenotype analysis in genomics and rare disease

HP:0004409 Hyposmia

GO:.0007608 sensory

perception of smell

34571 annotations in
22 species

HP:0012372 Abnormal eye

HP:0100886 Abnormality of
globe location

HP:0000490 Decply set eye

UBERON_0010230
eyeball of camera-type eye

157534 phenotype
annotations

HP:0007373
Motor neuron atrophy

CL:motor neuron

2150 phenotype
annotations
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Integration of HPO and

Improvement of Core Algorithms

«P) 1) Plain language “translation” of HPO

2) Integration of HPO with EHR standards

| 3) Anew format for phenotype data exchange

Z 4) A clinically interpretable algorithm for
phenotype-driven exome/genome analysis



Plain-language medical vocabulary for

orecision diagnosis
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Multiple LOINC codes can be interpreted as

same phenotypic outcome
20407-3 2657-5 50558-6 32710-6
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HPO:0031812
Nitrituria

How can we infer phenotypic data from these lab codes?



@ LOINC2HPO provides first comprehensive way to roll

up granular terms into meaningful buckets

LOINC pHQH%” e @) Monarch

NATIONAL CENTER
From Regenstrief ontolo Y |N|T|AT|VE

FOR DATA TO HEALTH

A universal standard for identifying

LOINC codes are widely used by
medical laboratory observations in

healthcare providers and

EHRs. e.g. LOINC 789-8 Erythrocytes

becoming mandatory by many
[#/volume] in Blood by Automated Count

regulatory agencies.

~86,000 LOINC codes exist



Integration of HPO with EHR

standards such as LOINC

a

P

Electronic health records laboratory results are an Ontologies can act as a

(EHRSs) contain a vast untapped source of bridge that harmonizes

amount of patient descriptive phenotypes, but disparate types of data
phenotype information are not directly amenable to

semantic similarity algorithms
used in clinical genetics

GOAL: Map EHR data to HPO to enable automatic extraction of detailed
deep phenotypic profiles of laboratory results for downstream studies



HPO terms enriched in acute asthma and

frequent prednisone groups

. Acute asthma diagnosis

Frequent prednisone usage

NATIONAL CENTER
FOR DATA TO HEALTH




Via LOINC2HPO we independently

discovered asthma biomarkers from lab tests

odds ratio(medical outcome) ~ exp(Bo+ B * X)
* Significant associations with acute asthma diagnosis:

Eosinophilia, Increased red blood cell count,
Increased VLDL cholesterol concentration,
Abnormality of vitamin metabolism

« Significant associations with frequent prednisone
prescription:

Hypoalbuminemia, Neutrophilia, Monocytosis,
Leukocytosis, Hypokalemia, Elevated serum
creatine phosphokinase

asthma

Price DB et al. 2015, Lancet Respir Med Ramaraju K et al, 2013, Lung India

Allen S et al, 2009, Thorax Ko SH et al, 2018, Lipids Health Dis

Jolliffe D et al, 2017, Lancet Respir Med  Chen YC, et al, 2013 Diabetes Metab Syndr
Thuesen BH, 2010, Allergy Al-Shawwa B et al, 2006, J Asthma

Yiallouros PK, 2012 Clin Exp Allergy Cottrell L et al, 2011, Am J Respir Crit Care Med
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http://bit.ly/loinc2hpo-npj

Exchanging phenotype information:

Phenopackets

E___S:-I,'I‘\QS__ e Phenotypes

Phenopackets



Phenopackets are aligned with GA4GH mission:

Interoperability of disease and phenotype data

Criteria for terminology use in GA4GH/Phenopackets

Y :
227wt Global Alliance
Open , B 8 for Genomics & Health
Good content coverage (cancer, rare, and complex disease) ‘fgfﬂ;;i;;\'
Interoperable with other standards Collaborate. Innovate. Accelerate.
Relevant for genomic medicine (e.g. variant interpretation)
proteomics patient WGS tumor pathology epigenetics
resources phenotypes germiine radiology RNA-seq

...from
disparate
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http://bit.ly/phenopackets-basel

Phenopackets

now obtaining
GA4GH certification!
A Data Exchange and Analysis Model for Rare disease and Cancer

» Phenopacketl , .
j— ] L .- 4 Vit Mypes
I: "PROBAND#" /D
HP:0000520
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d: "PATO:0000384" ity
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edigree: PED file xyz _ label: Severe
' "PROBAND #1" B - classOfOnset
N id "HP: 0003577"
4 label: "Congenital onset”
Phenopacket2 ™~

Anatomy of a Phenopacket: Phenotype information; Biosample (histologic diagnosis, phenotypes)
Genotypes, exome/genome file references; Pedigree, cohort; Links to EHR formats such as FHIR



SMART on FHIR
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Frontend

- Results
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G e FHIR-derived data model for running WES/WGS software
e Model for data curation (discussions with journals in progress)
e Reporting phenotypes to labs
e Common data model for algorithm development
e Making oncology path reports more easily computable



Z Clinically interpretable bioinformatics?

e Current WES/WGS detection rate: e Some phenotypic features may support
~40-50% a diagnosis while others do not

e But prevailing algorithms don'’t help e Prevailing algorithms don’t help users
us realize that there are no good interpret the relative contribution of
candidates. #1 may still be poor. individual HPO terms to the

computational ranking




Z New algorithm: LIRICAL

kelihood atio nterpretation of linical bnorma ities

e Frames prioritization in a novel likelihood ratio based method for
phenotypes and optionally genotypes

e Provides estimate of posttest probability

e Displays contribution of each feature to the final ranking

e Avoids arbitrary thresholds for imperfectly matching genotypes
e Outperforms existing algorithms for deeply phenotyped cases

COl: patent application



Z Phenotype matching

Patient P1 profile Patient P8 profile
(3 year old girl) (14 year old boy)
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! elayed speech an pelayed speech and
p language development language development
E HP-0000750
% Intellectual disability
5 HP-0001249
T -
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(7]
o
ﬁ Short stature
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Hypertelorism
— HP.00003%6
©
kY]
£ Blepharophimosis

HP-0000581

Epicanthus
HP.00002856

e Patient phenotypic features rarely exactly-match database descriptions of disease
e Patients may have unrelated (or related but never before observed) abnormalities
e Physicians may describe abnormalities at different granularity (often reflected in HPO hierarchy)



Z LIRICAL'’s Best Match:

Mabry syndrome (Posttest probability: 100%)

Broad nasal tip [HP0000455)

Intellectus disabdity. severe [MP-D010844)
Absent speech [HPO001344)
Mypertelorism [MP.0000314)
Femur iracture [HP0031844)

PIGY

T T T TR p 5 > ‘
HYPERPHOSPHATASIA WITH MENTAL RETARDATION [OMIM:239300): Rank: #1 Posttest probability: 100.0%

4 of th 5 features are characteristic of Hyperphosphatasia with mental retardation syndrome 1
(HPMRS1; Mabry syndrome)

Each of the two variants in PIGV NM_017837.3:¢.615C>G and ¢.854A>G is assessed as
predicted pathogenic, and since the expected number of rare predicted pathogenic variants in
PIGV is low, the likelihood ratio is 10366,

In this case, a clinician might downweight the finding of Femur fracture as being
unrelated and decide to follow up on the differential of HPMRS1.



LIRICAL: Posterior probabilities improve

interpretation of rankings

Broad nasal tip [HP:0000455)
Hypertelorism [HP:0000314)

Intellectual disability, severe [HP:0010864)
Absent speech [HP:.0001344)

Femur fracture [HP0031846)

DHCR7
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SMITH-LEMLI-OPITZ SYNDROME [OMIM:270400]: Rank: #4 Posttest probability: 1.0%

The fourth disease in the list is Smith Lemli Opitz (SLO) syndrome, with a posttest probability of 1% (only a
single heterozygous predicted pathogenic variant in DHCR7 was found, but SLO is an autosomal recessive
disease, so the genotype likelihood ratio is about 1; the phenotype match is worse that for HPMRS1).

The interpretation is that there is a low probability for this differential (which is much lower yet for following
entries), and so users should focus attention on differentials above rank #4.



Z LIRICAL: Posterior probabilities improve

interpretation of rankings

Patient Hyperphosphatasia Patient Smith-Lemiey-Opitz
profile “ri annotations profile o annotations
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“ s

| #4) smith-Lemiey-Opitz *



LIRICAL: Defining the likelihood ratio

LR(z) — sensitivity ~ P(x|D;)
1 —specificity  P(z|-D;)

e The likelihood ratio is commonly used to compute the accuracy of tests

For LIRICAL, we adapted this framework to phenotype-driven genomic diagnostics

- P(h)|Dj)
LRUM) = B |-D,)

e P(h;[D;) is the probability of a person with disease D; of having phenotypic abnormality h; (HPO term i)
[ J

Definition: Probability of a test result x in a patient with the target disease (D;) divided by the probability of
that result in a person without the disease.

e Forinstance, P(h;[D;) =34/57=59.7% that a person with Machado-Joseph disease has External
ophthalmoplegia (HP:0000544) accordingto PMID:19659750 and available as an HPO annotation.
e LIRICAL uses various heuristics to account for partial matches using the ontology structure of the HPO



Z LIRICAL: Defining the likelihood ratio

P(hi|=Dj)

But how do we calculate the probability of HPO term /in an individual without disease D;?
e Unknown population prevalence of the vast majority of the abnormalities represented in HPO
e Our model posits that the individual being tested has some Mendelian disease i, and so we can
take the average frequency of the feature (f;) amongst the N=~7000 diseases of the HPO

disease-phenotype annotation database.

P(hdﬂDj):( 1) 2 b~ —Zfzm

k#y




LIRICAL performs well on published case reports

140

rank 1: 139 (71.7%)
rank 2: 27 (85.6%)
rank 3: 9 (90.2%)

120

100

80

60

Count

40

20

Rank

e Simulations on 194 phenopackets from published case reports representing 190 Mendelian
diseases

e Over 90% were in the top 3 ranks, over 97% in the top 10

Substantially better performance than related in house tools

e Intuitively, LIRICAL allows really strong matches to help more than previous semantic similarity
based approaches that essentially average each match score.



LIRICAL

kelihood atio nterpretation of linical bnorma ities
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Complete LIRICAL output for one differential diagnosis

manuscript in preparation
https://github.com/TheJacksonLaboratory/LIRICAL



HPO + Monarch Initiative:

Semantic classification for precision medicine
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Haendel, Chute, Robinson (2018)
Classification, Ontology, and Precision

Curation and
harmonization of disease
definitions: phenotypic
features, genetic variation,
and environmental factors

Key Ontologies: HPO,
uberon, MONDO, ECTO,

close affiliation with GO

Data integration across
translational sources
(human, model
organisms, veterinary)

Medical Action Ontology
(MAXO): See Poster by
Leigh Carmody

Medicine. N Eng J Med 379:1452-1462 bit.ly/nejm-ontologies-medicine
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